Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Computation ; 11(2):24, 2023.
Article in English | ProQuest Central | ID: covidwho-2268973

ABSTRACT

Coarse-grained (CG) modeling has defined a well-established approach to accessing greater space and time scales inaccessible to the computationally expensive all-atomic (AA) molecular dynamics (MD) simulations. Popular methods of CG follow a bottom-up architecture to match properties of fine-grained or experimental data whose development is a daunting challenge for requiring the derivation of a new set of parameters in potential calculation. We proposed a novel physics-informed machine learning (PIML) framework for a CG model and applied it, as a verification, for modeling the SARS-CoV-2 spike glycoprotein. The PIML in the proposed framework employs a force-matching scheme with which we determined the force-field parameters. Our PIML framework defines its trainable parameters as the CG force-field parameters and predicts the instantaneous forces on each CG bead, learning the force field parameters to best match the predicted forces with the reference forces. Using the learned interaction parameters, CGMD validation simulations reach the microsecond time scale with stability, at a simulation speed 40,000 times faster than the conventional AAMD. Compared with the traditional iterative approach, our framework matches the AA reference structure with better accuracy. The improved efficiency enhances the timeliness of research and development in producing long-term simulations of SARS-CoV-2 and opens avenues to help illuminate protein mechanisms and predict its environmental changes.

2.
Computation ; 11(2):24, 2023.
Article in English | MDPI | ID: covidwho-2225078

ABSTRACT

Coarse-grained (CG) modeling has defined a well-established approach to accessing greater space and time scales inaccessible to the computationally expensive all-atomic (AA) molecular dynamics (MD) simulations. Popular methods of CG follow a bottom-up architecture to match properties of fine-grained or experimental data whose development is a daunting challenge for requiring the derivation of a new set of parameters in potential calculation. We proposed a novel physics-informed machine learning (PIML) framework for a CG model and applied it, as a verification, for modeling the SARS-CoV-2 spike glycoprotein. The PIML in the proposed framework employs a force-matching scheme with which we determined the force-field parameters. Our PIML framework defines its trainable parameters as the CG force-field parameters and predicts the instantaneous forces on each CG bead, learning the force field parameters to best match the predicted forces with the reference forces. Using the learned interaction parameters, CGMD validation simulations reach the microsecond time scale with stability, at a simulation speed 40,000 times faster than the conventional AAMD. Compared with the traditional iterative approach, our framework matches the AA reference structure with better accuracy. The improved efficiency enhances the timeliness of research and development in producing long-term simulations of SARS-CoV-2 and opens avenues to help illuminate protein mechanisms and predict its environmental changes.

3.
Front Mol Biosci ; 9: 953064, 2022.
Article in English | MEDLINE | ID: covidwho-2163058

ABSTRACT

We calculate the thermal and conformational states of the spike glycoprotein (S-protein) of SARS-CoV-2 at seven temperatures ranging from 3°C to 95°C by all-atom molecular dynamics (MD) µs-scale simulations with the objectives to understand the structural variations on the temperatures and to determine the potential phase transition while trying to correlate such findings of the S-protein with the observed properties of the SARS-CoV2. Our simulations revealed the following thermal properties of the S-protein: 1) It is structurally stable at 3°C, agreeing with observations that the virus stays active for more than two weeks in the cold supply chain; 2) Its structure varies more significantly at temperature values of 60°C-80°C; 3) The sharpest structural variations occur near 60°C, signaling a plausible critical temperature nearby; 4) The maximum deviation of the receptor-binding domain at 37°C, corroborating the anecdotal observations that the virus is most infective at 37°C; 5) The in silico data agree with reported experiments of the SARS-CoV-2 survival times from weeks to seconds by our clustering approach analysis. Our MD simulations at µs scales demonstrated the S-protein's thermodynamics of the critical states at around 60°C, and the stable and denatured states for temperatures below and above this value, respectively.

4.
Frontiers in molecular biosciences ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2058256

ABSTRACT

We calculate the thermal and conformational states of the spike glycoprotein (S-protein) of SARS-CoV-2 at seven temperatures ranging from 3°C to 95°C by all-atom molecular dynamics (MD) µs-scale simulations with the objectives to understand the structural variations on the temperatures and to determine the potential phase transition while trying to correlate such findings of the S-protein with the observed properties of the SARS-CoV2. Our simulations revealed the following thermal properties of the S-protein: 1) It is structurally stable at 3°C, agreeing with observations that the virus stays active for more than two weeks in the cold supply chain;2) Its structure varies more significantly at temperature values of 60°C–80°C;3) The sharpest structural variations occur near 60°C, signaling a plausible critical temperature nearby;4) The maximum deviation of the receptor-binding domain at 37°C, corroborating the anecdotal observations that the virus is most infective at 37°C;5) The in silico data agree with reported experiments of the SARS-CoV-2 survival times from weeks to seconds by our clustering approach analysis. Our MD simulations at µs scales demonstrated the S-protein’s thermodynamics of the critical states at around 60°C, and the stable and denatured states for temperatures below and above this value, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL